You are here

قراءة كتاب The Astronomy of Milton's 'Paradise Lost'

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
The Astronomy of Milton's 'Paradise Lost'

The Astronomy of Milton's 'Paradise Lost'

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 4

astronomy to be regarded as a true theoretical science. The positions of the fixed stars and the paths of the planets were determined with greater accuracy, and irregularities of the motions of the Sun and Moon were investigated with greater precision. Attempts were made to ascertain the distance of the Sun from the Earth, and also the dimensions of the terrestrial sphere. The obliquity of the ecliptic was accurately determined, and an arc of the meridian was measured between Syene and Alexandria. The names of Aristarchus, Eratosthenes, Aristyllus, Timocharis, and Autolycus, are familiarly known in association with the advancement of the astronomy of this period.

We now reach the name of Hipparchus of Bithynia (140 B.C.), the most illustrious astronomer of antiquity, who did much to raise astronomy to the position of a true science, and who has also left behind him ample evidence of his genius ‘as a mathematician, an observer, and a theorist.’ We are indebted to him for the earliest star catalogue, in which he included 1,081 stars. He discovered the Precession of the Equinoxes, and determined the motions of the Sun and Moon, and also the length of the year, with greater precision than any of his predecessors. He invented the sciences of plane and spherical trigonometry, and was the first to use right ascensions and declinations.

The next astronomer of eminence after Hipparchus was Ptolemy (130 A.D.), who resided at Alexandria. He was skilled as a mathematician and geographer, and also excelled as a musician. His chief discovery was an irregularity of the lunar motion, called the ‘evection.’ He was also the first to observe the effect of the refraction of light in causing the apparent displacement of a heavenly body from its true position. Ptolemy devoted much of his time to extending and improving the theories of Hipparchus, and compiled a great treatise, called the ‘Almagest,’ which contains nearly all the knowledge we possess of ancient astronomy. Ptolemy’s name is, however, most widely known in association with what is called the Ptolemaic theory. This system, which originated long before his time, but of which he was one of the ablest expounders, was an attempt to establish on a scientific basis the conclusions and results arrived at by early astronomers who studied and observed the motions of the heavenly bodies. Ptolemy regarded the Earth as the immovable centre of the universe, round which the Sun, Moon, planets, and the entire heavens completed a daily revolution in twenty-four hours. After the death of Ptolemy no worthy successor was found to occupy his place, the study of astronomy began to decline among the Greeks, and after a time it ceased to be cultivated by that people.

The Arabs next took up the study of astronomy, which they prosecuted most assiduously for a period of four centuries. Their labours were, however, confined chiefly to observational work, in which they excelled; unlike their predecessors, they paid but little attention to speculative theories—indeed, they regarded with such veneration the opinions held by the Greeks, that they did not feel disposed to question the accuracy of their doctrines. The most eminent astronomer among the Arabs was Albategnius (680 A.D.). He corrected the Greek observations, and made several discoveries which testified to his abilities as an observer. Ibn Yunis and Abul Wefu were Arab astronomers who earned a high reputation on account of the number and accuracy of their observations. In Persia, a descendant of the famous Genghis Khan erected an observatory, where astronomical observations were systematically made. Omar, a Persian astronomer, suggested a reformation of the calendar which, if it had been adopted, would have insured greater accuracy than can be attained by the Gregorian style now in use. In 1433, Ulugh Beg, who resided at Samarcand, made many observations, and constructed a star catalogue of greater exactness than was known to exist prior to his time. The Arabs may be regarded as having been the custodians of astronomy until the time of its revival in another quarter of the Globe.

After the lapse of many centuries, astronomy was introduced into Western Europe in 1220, and from that date to the present time its career has been one of triumphant progress. In 1230, a translation of Ptolemy’s ‘Almagest’ from Arabic into Latin was accomplished by order of the German Emperor, Frederick II.; and in 1252 Alphonso X., King of Castile, himself a zealous patron of astronomy, caused a new set of astronomical tables to be constructed at his own expense, which, in honour of his Majesty, were called the ‘Alphonsine Tables.’ Purbach and Regiomontanus, two German astronomers of distinguished reputation, and Waltherus, a man of considerable renown, made many important observations in the fifteenth century.

The most eminent astronomer who lived during the latter part of this century was Copernicus. Nicolas Copernicus was born February 19, 1473, at Thorn, a small town situated on the Vistula, which formed the boundary between the kingdoms of Prussia and Poland. His father was a Polish subject, and his mother of German extraction. Having lost his parents early in life, he was educated under the supervision of his uncle Lucas, Bishop of Ermland. Copernicus attended a school at Thorn, and afterwards entered the University of Cracow, in 1491, where he devoted four years to the study of mathematics and science. On leaving Cracow he attached himself to the University of Bologna as a student of canon law, and attended a course of lectures on astronomy given by Novarra. In the ensuing year he was appointed canon of Frauenburg, the cathedral city of the Diocese of Ermland, situated on the shores of the Frisches Haff. In the year 1500 he was at Rome, where he lectured on mathematics and astronomy. He next spent a few years at the University of Padua, where, besides applying himself to mathematics and astronomy, he studied medicine and obtained a degree. In 1505 Copernicus returned to his native country, and was appointed medical attendant to his uncle, the Bishop of Ermland, with whom he resided in the stately castle of Heilsberg, situated at a distance of forty-six miles from Frauenburg. Copernicus lived with his uncle from 1507 till 1512, and during that time prosecuted his astronomical studies, and undertook, besides, many arduous duties associated with the administration of the diocese; these he faithfully discharged until the death of the Bishop, which occurred in 1512. After the death of his uncle he took up his residence at Frauenburg, where he occupied his time in meditating on his new astronomy and undertaking various duties of a public character, which he fulfilled with credit and distinction. In 1523 he was appointed Administrator-General of the diocese. Though a canon of Frauenburg, Copernicus never became a priest.

After many years of profound meditation and thought, Copernicus, in a treatise entitled ‘De Revolutionibus Orbium Celestium,’ propounded a new theory, or, more correctly speaking, revived the ancient Pythagorean system of the universe. This great work, which he dedicated to Pope Paul III., was completed in 1530; but he could not be prevailed upon to have it published until 1543, the year in which he died. In 1542 Copernicus had an apoplectic seizure, followed by paralysis and a gradual decay of his mental and vital powers. His book was printed at Nuremberg, and the first copy arrived at Frauenburg on May 24, 1543, in time to be

Pages