You are here

قراءة كتاب Histology of the Blood, Normal and Pathological

تنويه: تعرض هنا نبذة من اول ١٠ صفحات فقط من الكتاب الالكتروني، لقراءة الكتاب كاملا اضغط على الزر “اشتر الآن"

‏اللغة: English
Histology of the Blood, Normal and Pathological

Histology of the Blood, Normal and Pathological

تقييمك:
0
No votes yet
المؤلف:
دار النشر: Project Gutenberg
الصفحة رقم: 8

of an anæmic patient under the microscope for iron one finds the iron reaction in numerous red blood corpuscles. This means the presence of iron which is not a normal constituent of hæmoglobin. Other iron may be contained in the morphological elements (including the white corpuscles) as a combination of proteid with iron, which is not directly recognisable. It is further known that in anæmias the amount of iron of all organs is greatly raised (Quincke), apparently often the result of a raised destruction of hæmoglobin ("waste iron," "spodogenous iron"). In many cases too, it should be borne in mind that the administration of iron increases the amount of iron in the blood and organs.

From these considerations we see how unreliable in pathological cases is the calculation of the amount of hæmoglobin from the amount of iron. We have been particularly led to these observations by the work of Biernacki, since the procedure of inferring the amount of hæmoglobin from the amount of iron has led to really remarkable conclusions. For example, amongst other things, he found the iron in two cases of mild, and one of severe chlorosis quite normal. He concludes that chlorosis, and other anæmias, shew no diminution, but even a relative increase of hæmoglobin: but that other proteids of the blood on the contrary are reduced. These difficult iron estimations stand out very sharply from the results of other authors and could only be accepted after the most careful confirmation. But the above analysis shews, that in any case the far-reaching conclusions which Biernacki has attached to his results are insecure. For these questions especially, complete estimations with the aid of the ferrometer of A. Jolles are to be desired.

Great importance has always been attached to the investigation of the specific gravity of the blood; since the density of the blood affords a measure of the number of corpuscles, and of their hæmoglobin equivalent. It is easy to collect observations, as in the last few years two methods have come into use which require only a small quantity of material, and do not appear to be too complicated for practical clinical purposes. One of these has been worked out by R. Schmaltz, in which small amounts of blood are exactly weighed in capillary glass tubes (the capillary pyknometric method). The other is A. Hammerschlag's, in which, by a variation of a principle which was first invented by Fano, that mixture of chloroform and benzol is ascertained in which the blood to be examined floats, i.e. which possesses exactly the specific gravity of the blood[2].

According to the researches of these authors and numerous others who have used their own methods, the specific gravity of the total blood is physiologically 1058-1062, or on the average 1059 (1056 in women). The specific gravity of the serum amounts to 1029-1032—on the average 1030. From which it at once follows that the red corpuscles must be the chief cause of the great weight of the blood. If their number diminishes, or their number remaining constant, they lose in hæmoglobin, or in volume, the specific gravity would be correspondingly lowered. We should therefore expect a low specific gravity in all anæmic conditions. Similarly with an increased number of corpuscles, and a high hæmoglobin equivalent, an increase in the density of the total blood makes its appearance.

Hammerschlag has found in a large number of experiments that the relation between the specific gravity and the amount of hæmoglobin is much closer than between the specific gravity and the number of corpuscles. The former in fact is so constant that it may be represented by a table.

Pages